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MSW Transducers

1. INTRODUCTION

This report describes research on magnetostatic wave transducers performed at RADC over the
past several years. Using the theory presented here, terminal characteristics of MSW delay lines.

made up of a pair of transducers and a ferrite delay medium can be computed for cases of practical
interest. Insertion loss, phase, time delay, and input impedance versus frequency may be computed.
Input parameters are: magnetic biasing field, transducer geometry, YIG parameters and geometry, and
ground plane spacing. The theory accurately predicts the behavior of wide band single element MSW

transducers on YIG, and the behavior of multielement transducers weakly coupled to the YIG when
individual transducer elements are narrow compared to Interelement spacing and when maximum

transducer dimensions are small compared to electromagnetic wavelengths. Under identical
conditions a transducer apodization equation is developed.

Nine chapters and five appendices make up the report. A table of contents is useful in locating

specific topics. Organization of the report is as follows: Gyromagnetic wave propagation basics,
transducer geometries, and MSW delay line fabrication are discussed in Chapter 1. MSW analysis,
starting with Maxwell's equations coupled with the Gyromagnetic equation, is developed in Chapter 2.
to the point where transducer radiation resistance, reactance and delay line insertion loss are
determined. Chapter 3 provides a description of MSW computer programs and procedures for using
them. Examples of computer generated data, in the form of plots, are provided in Chapter 4. A

description of MSW experiments and their results, performed at RADC/EEA, are given in Chapter 5.
Chapter 6 discusses specialized topics that may be useful for further improvement of transducer
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models, and a new generalized model that adapts to any siripline waveguide. Chapter 7 provides a

(iscriplion aind( evaliation of all MSW related pi iblitatlons produced by EEA. Chapter 8 is a detailed

analysis of the back reaction of nonreciprocal magnetostatic surface waves onto the current which

gcnerated lthem. Chapter 9 provides a short discussion.

Appendix A provides a reasonably complete list of publications related to the work of this reporl.

Appendixes 11 and E provide analytical details related to current distribution and a combined 1I'/T

model, respectively. A list of symbols and notation Is provided in Appendix C. Appendix 1) describes a

prototyI)e band pass filter fabricated at RAI)C/EEA that has not been previously published.

1.1 Propagating MSW Modes

Figure 1-1 shows the three basic pure propagating magnetostatic wave modes in a magnetic film

ofyttrimn iron garnet, or in other low loss ferrites. At the present time virtually all MSW devices are

characterized without regard to magnetocrystalline anisotropy because this effect is small. On the

other iand. magnetic anisotropy due to the presence of a DC magnetic basing field Is large and cannot

be negleceld. This bias field induced anisotropy gives rise to the three distinct propagating modes.

They are known as MSSW, MSBVW and MSFVW, for magnetostatic surface waves, backward volume

waves, and forward volume waves, respectively.

With present devices, MSWs typically propagate on the order of fifty wavelengths before losing

an appreciable amount of energy through scattering and beam spreading. These waves, or modes, are

)otentially useful for analog signal processing directly at microwave frequencies, and for tunable

Ianosecond delay lines.

A physical rnechanism for propagating MSW modes Is the energy transfer between neighboring

iiagnel ic dipoles. Minimum loss occurs when the magnetic medium is magnetically saturated; all

miagnetic domains are removed leaving one large domain with all dipoles having the same amplitude

and orientation. When waves are present, the dipoles coherently waver with varying orientation.

Magnetostatic waves can be viewed as ordinary electromagnetic waves propagating In a

lcrrimiagnetic medium with most of the energy carried by the magnetic field component of the EM

wave. Ferromagnets, on the other hand, have large conducting losses, and consequently are not used

for MSW. The waves are slow, about three orders of magnitude slower than light. Although the electric

field can be neglected when calculating magnetic field, using the magnetostatic approximation curl

H 0: the electric field cannot be neglected when calculating power flow because Poynting's vector,

E H. niay be large. The RF magnetic field may be calculated from Maxwell's equations along with the

gyrommagnctic equation which characterizes the magnetic medium. RF magnetic fields are found from

Ithe gradient of a scalar potential, Nfj. Then, the associated RF electric field follows from the calculated

inagncicti field. These two calculated RF field components, E and H, define the Poynting vector. This is

SIli(. (ss(iee of slow magnetically dominated electromagnetic waves. Unfortunately, they have not

])UcI giv cmi a mSCfiml descriptive name: and this leads to some confusion. They are not magnetostatic in

Ilh" ustal sense of Ith(: word: that is to say, non-propagating. Actually, magnetic energy propagates in

well (efined in1odes at a velocity midway between the velocity of acoustic waves in solids and

('lcct roniagne ic waves in space.
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Figure 1- 1. Three Pure MSW Propagating Modes

1.2 RF Magnetization

Figure 1-1 also provides a good understanding of wave motion in ferrites. Here are depicted the

three pure propagating MSW modes. The basic feature distinguishing one mode from the other is the

orientation of the magnetic biasing field, H, and the direction of propagation relative to the film

normal. In all three cases, as depicted, energy propagation is from right to left. The magnetic biasing

field is spatially uniform and constant with time. The strength of this applied field is large enough to

saturate the magnetic medium; that is. all magnetic domains are removed. For YIG. the saturation

magneti7ation at room temperature is about 1760 gauss everywhere within the medium. In addition.

the vector M is exactly aligned with H when the magnetic system is undisturbed. When an RF magnetic

field is applied perpendicular to H. a precession of M takes place about H at frequency (o and some

small angle 0. The transverse component of magnetization. mt, rotates counter-clockwise when

viewed in the direction opposite to the orientation of H, as shown.

Consider, for example, the magnetostatic forward volume wave, MSFVW, shown in the center of

Figi ire I - 1. Here H is pointed in the positive y direction. When a wave is present, the magnitude of M is

unchanged but its orientation changes with wave motion. If we picture the group of circles depicted on

the YIG's top surface as moving to the left In the direction of propagation, then it may be seen that m t

which traces out these circles, rotates in a CCW direction when viewed along the negative y direction,
at a fixed position in space. Components mx and m7 are projections of mt onto the sides of the YIG

bars; and a wavelength is the distance between two circles along the propagation direction having

parallel mt, as indicated in the figure. The other two modes behave in a similar manner.
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The three modes depicted here are the only pure MSW modes that can exist in a ferrite slab. They

are pure in the sense that phase and group velocity vectors are colinear; either parallel or anti-

parallel. They are parallel for MSFVW and MSSW and anti-parallel for MSBVW. All other modes

have non-colinear phase and group velocity vectors. Actually, the three pure modes exist only in a

medium whose magnetocrystalline anisotropy is negligible. Magnetocrystalline anisotropy is

neglected in present day MSW devices. Moreover, low linewidth polycrystalline YIG. which has no

anisotropy, has successfully been used to demonstrate MSW device operation. 1 It may be possible to

propagate MSW over much longer distances than the present limit of about three centimeters, by

taking advantage of crystalline orientations that focus MSW. This is not presently done because it is

dillicult to grow YIG films of high enough quality and large enough area in any plane other than the

(111) plane. In this plane inagnetocrystalline anisotropy is weak.

As a further example of magnetization dynamics, refer to Figure 1-2a. Depicted here for an

MSSW is the movement of the RF magnetization component perpendicular to a DC magnetic field. The

RF component, mt, is depicted by an arrow whose tip traces out an ellipse. The vector mt rotates

counter-clockwise when the magnetic biasing field points out of the plane of the figure, as shown. The
A A

energy propagation direction is given by H x n where n is a unit vector pointing upwards. This

elliptical motion resembles particle motion in a Rayleigh surface wave, SAW, hence the name

"Rayleigh type magnetic surface wave" is sometimes used. There is however, a subtle difference

between magnetic and acoustic surface wave dynamics. In addition to the obvious difference that one

is a wave of magnetization and the other a wave of physical displacement. A SAW can be supported by

a single solid/free space interface, an MSSW requires two Interfaces such as n a thin film.

We can see why MSSWs require two surfaces to support them, by referring to Figure 1-2b and

Eqs. (1) and (2). Figure 1-2b shows MSSW amplitude distribution throughout the thickness of the

propagation medium; Eq. (1) gives the MSSW amplitude ratio between top and bottom surfaces; and

Eq. (2) is the dispersion relation for MSSW on ferrite samples in free space. Note that as YIG

thickness, d. approaches zero, the ratio of surface amplitudes approaches unity: and when the
thickness approaches infinity, the amplitude ratio approaches zero. This means that energy density

is highly concentrated on one surface. However, as the thickness approaches infinity, MSSW
wavelength must also approach Infinity in order to have a finite frequency [See Eq. (2)]. On the other

hand, when thickness approaches zero, MSSW wavelength also approaches zero for a finite frequency.

Thus, very thick films only support long wavelengths, and very thin films only support short

wavelengths. In the limit, d approaches infinity, wavelengths that satisfy the dispersion relation, but

are much larger than sample dimensions are not physically realizable. In the d approaches zero limit,
wavelengths of less than one micron are extremely lossy; and. so films less than one micron thick

may not be useful for MSW.

[coth(kd/2) - tanh(kd/2)](1 + K)Amplitude Ratio = [coth(kd/2) + tanh(kd/2)](l + K) - 2v+2 (I-)

1. Zhang. X. and Lin, H. (1982) The present status of microwave ferrite materials and devices in
China, presented at the Third Joint Intermag/Magnetism and Magnetic Materials Conference.
Montreal, Canada, Paper EC-0I.
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